CONSISTENT EVALUATION PROTOCOL (CEP) CPUC Energy Storage Workshop July 28, 2015 ## **CEP Overview** - The CEP is used to report solicitation results to the Commission in a standardized format. - Utility-specific evaluations are re-run for shortlisted offers: - Using same costs and operating characteristics from offers; - Replacing market prices with standardized, public data; and - Ignoring non-quantifiable adjustments like project viability and project diversity, and utility-specific adjustments like location. - The CEP includes descriptive, quantitative, and qualitative information on offers. ## **CEP Contents** - Descriptive information comes directly from the offers. - Quantitative information includes a calculation of net market value based on public inputs. - Qualitative information includes an indication of the primary and secondary end uses for each offer. # **CEP Publicly Available Data Inputs** The standardized, publicly available data—to be used in rerunning the utility-specific net market value calculations—will come from the most recent avoided cost calculator used in a Commission proceeding*. ### The public inputs include: Forecast hourly energy prices Discount rate Forecast capacity prices System loss factors Forecast ancillary services value Forecast GHG costs Forecast monthly gas prices #### Public data will be refreshed Fall 2016 for 2nd RFO * The most recent such avoided cost calculator is "DERAvoidedCostModel_v3.9_2011 v4d.xlsm" and is available on E3's website at http://www.ethree.com/public_projects/cpuc5.php # **CEP Descriptive Information** Descriptive information comes directly from the offer and includes the following items. | Utility (PG&E/SCE/SDG&E)Name of Project | Commercial Operation DateTerm (Years) | Self-Discharge (MW/hour)Ramp Rate (MW/hour) | |--|--|--| | Interconnection Voltage (kV)Interconnection Level (T/D) | Maximum Capacity (MW)Minimum Capacity (MW) | AGC (Yes/No)Regulation at Zero (Yes/No) | | Local Capacity AreaZone (NP/ZP/SP) | Qualifying RA Capacity (MW)Duration (Hours) | Contract Cost (\$)Variable O&M (\$/MWh) | | Status (New/Existing)Product (Dispatchable/RA) | Efficiency (%)Max Daily Switches (#/day) | Fixed O&M (\$/kW-year) | | Storage Technology | Max Cycles per Lifetime (#) | | ## **CEP Quantitative Information** The Net Market Value calculation—benefits minus costs—is done with utility-specific models using publicly available prices. The market benefits and costs are as follows. | Market Benefits | Market Costs | | |---|---|--| | Capacity/Resource Adequacy ValueEnergy Value | Fixed Capacity Payments and Fixed O&M Cost* Charging Costs and Variable O&M Cost | | | Ancillary Services ValueDistribution Investment Deferral Value | Network Upgrade CostGHG Compliance Cost (if applicable to project) | | | | Debt Equivalency CostMarket Participation Cost | | ^{*}Includes developers' costs such as permitting, construction, decommissioning, etc. # **GHG Impacts Captured in NMV** #### Energy prices include GHG cost - Effectively adder to gas cost - 2015 actual \$12/t ~ \$0.75/MMBtu - 2020 forecast \$40/t ~ \$2.10/MMBtu - Higher \$/MWh GHG cost on-peak because less efficient plants - GHG impacts incorporated when modeling energy cycling - If storage project is "making money" doing energy shifting, it is also reducing GHGs. ### Ancillary Services prices also incorporate GHG cost Based on opportunity cost of not generating ## **CEP Qualitative Information** Qualitative information consists of an indication of which end uses might exist for an offer: → "2" = primary function; "1" = secondary function; and "0" = function not present | 1. Ancillary services: frequency regulation | 8. Intermittent resource integration: wind (ramp / voltage support) | 15. Distribution peak capacity support (upgrade deferral) | |---|--|--| | 2. Ancillary services: spin / non-spin / replacement reserves | 9. Intermittent resource integration: photovoltaic (time shift, voltage sag, rapid demand support) | 16. Distribution operation (voltage / value at risk (VAR) support) | | 3. Ancillary services: ramp | 10. Supply firming | 17. Outage mitigation: micro-grid | | 4. Black start | 11. Peak shaving | 18. Time-of-use (TOU) energy cost management | | 5. Real-time energy balancing | 12. Transmission peak capacity support (upgrade deferral) | 19. Power quality | | 6. Energy price arbitrage | 13. Transmission operation (short duration performance, inertia, system reliability) | 20. Back-up power | | 7. Resource adequacy | 14. Transmission congestion relief | |